ORGANIC AND BIOLOGICAL CHEMISTRY

[CONTRIBUTION NO. 535 FROM THE CENTRAL RESEARCH DEPARTMENT, EXPERIMENTAL STATION, E. I. DU PONT DE NEMOURS AND COMPANY]

The Chemistry of Sulfur Tetrafluoride. II. The Fluorination of Organic Carbonyl Compounds¹

By W. R. Hasek, W. C. Smith and V. A. Engelhardt Received July 17, 1959

The selective replacement of oxygen atoms by fluorine in many types of organic compounds has been accomplished with SF₄. Typical reactions are the conversion of such groups as carboxyl to trifluoromethyl, carbonyl to difluoromethylene and hydroxyl to fluorine. These reactions provide direct syntheses of many hitherto inaccessible fluorine-containing compounds.

Sulfur tetrafluoride (SF₄), a relatively new chemical entity, has been found to be a remarkably effective reagent for the selective replacement of carbonyl oxygen in organic compounds with fluorine.² The reaction has broad scope and is effective

$$C=0 + SF_4 \longrightarrow CF_2 + SOF_2$$

with a variety of carbonyl compounds including aldehydes, ketones and carboxylic acids. Discovery of this reaction, one of few reactions useful for introduction of fluorine at a specific site in a molecule, makes available many new or relatively inaccessible fluorine compounds. Reactions of SF_4 with the various classes of organic carbonyl compounds are discussed in the following sections.

Carboxylic Acids.—In the reaction of a carboxylic acid with SF₄, the carboxvl group is converted to a trifluoromethyl group. This has proved to be the most general and direct method known for synthesizing compounds having CF₃ groups. Although a trifluoromethyl derivative can be obtained directly from a carboxylic acid, the reaction, illustrated below for benzoic acid, proceeds in two steps—formation of the acyl fluoride and replacement of the carbonyl oxygen.

$$\begin{array}{c} C_6H_5COOH \,+\, SF_4 \longrightarrow C_6H_5COF \,+\, HF \,+\, SOF_2 \\ C_6H_5COF \,+\, SF_4 \longrightarrow C_6H_5CF_3 \,+\, SOF_2 \end{array}$$

The first step occurs readily at or below room temperature, while the second step requires elevated temperatures. Table I lists a wide variety of aliphatic and aromatic carboxylic acids that react smoothly with SF_4 . With polybasic acids, the degree of fluorination may be controlled by the amount of SF_4 used. Thus, from sebacic acid either 1,1,1,10,10,10-hexafluorodecane or 10,10,10-trifluorodecanoyl fluoride may be obtained as the principal product.

principal product.

HOOC(CH₂)₈COOH
$$\xrightarrow{6SF_4}$$
 CF₃(CH₂)₈CF₃

$$\downarrow 3SF_4$$

CF₃(CH₂)₈COF + CF₃(CH₂)₈CF₃ + FCO(CH₂)₈COF
$$45\%$$

That the reaction of a carbonyl compound with

That the reaction of a carbonyl compound with SF_4 possesses an unusual degree of specificity is shown by the fact that olefinic and acetylenic bonds are unaffected by SF_4 . As a result, trifluoromethyl-

(2) W. C. Smith, U. S. Patent 2,859,245 (November 4, 1958).

ethylene and trifluoromethylacetylene are now easily accessible in good yield from acrylic and propiolic acids, respectively.

$$\begin{array}{c} \text{CH}_2 \!\!\!=\!\! \text{CHCOOH} \xrightarrow{\text{SF}_4} \text{CH}_2 \!\!\!=\!\! \text{CHCF}_3 \\ \text{CH} \!\!\!=\!\! \text{CCOOH} \xrightarrow{\text{SF}_4} \text{CH} \!\!\!=\!\! \text{CCF}_3 \end{array}$$

Other functional groups including fluoro, chloro, bromo, nitro and methoxycarbonyl usually are unaffected by SF_4 at temperatures up to 160° .

In some cases $\alpha, \alpha, \alpha', \alpha'$ -tetrafluoro ethers have been isolated from reactions of carboxylic acids and SF₄. For example, diglycolic acid yielded 2,2,6,6-tetrafluorodioxane as well as 2,2,2-trifluoroethyl ether.

HOOCCH₂OCH₂COOH
$$\xrightarrow{\text{SF}_4}$$

$$CF_3CH_2OCH_2CF_3 + O \xrightarrow{\text{CH}_2 - \text{CF}_2} O$$

Acid Anhydrides, Salts and Acyl Halides.—Carboxylic acid anhydrides, salts and acyl halides react with SF₄ to give products like those from the acids (Table II), but more vigorous conditions are required for reaction. Whereas phthalic acid yielded a mixture of o-bis-(trifluoromethyl)-benzene (43% yield) and o-trifluoromethylbenzoyl fluoride (23% yield) at 120°, the anhydride yielded only phthaloyl fluoride (92% yield) at 180° and required a temperature of 350° for conversion to o-bis-(trifluoromethyl)-benzene (45% yield).

The anhydride ring may react without loss of the ring oxygen atom, e.g., dichloromaleic anhydride and SF₄ gave 3,4-dichloro-2,2,5,5-tetrafluoro-2,5-dihydrofuran.

$$\begin{array}{c} \text{CIC-CO} \\ \parallel \\ \text{CIC-CO} \end{array} \text{O} \xrightarrow{\text{SF}_4} \begin{array}{c} \text{CIC-CF}_2 \\ \parallel \\ \text{CIC-CF}_2 \end{array} \text{O}$$

The reaction of an acyl fluoride with SF_4 proceeds in the expected manner to give a trifluoromethyl compound. The reaction of an acyl chloride and SF_4 is not so straight-forward, however. With benzoyl chloride, the initial reaction appears to be halogen exchange of Cl for F. This is followed by replacement of the carbonyl oxygen with two fluorine atoms and also by chlorination of the ring. The nature of the chlorinating agent is unknown.

$$C_6H_5COC1 + SF_4 \rightarrow C_0H_5COF \rightarrow C1$$

⁽¹⁾ For paper I of this series see C. W. Tullock, F. S. Fawcett, W. C. Smith and D. D. Coffman, This Journal, **82**, 539 (1960).

					REACTIONS OF CARBOXYLIC	Produ				A = 01v	ses. %		
Starting material-		Moles	Temp.,	Time.		Yield,			Calculat	:d		-Found	
Structure	Moles	SF ₄	°C.	hr.	Structure	%	Properties	С	H	F	C		F
CH₃CH₂COOH	0.60	1.82	150	8	CH ₃ CH ₂ CF ₃ ^d	89				-	uetric a	-	
$CH_3(CH_2)_5COOH$. 20	0.65	130	6	CH ₃ (CH ₂) ₅ Cl ² ₃	80	B.p. 101°, n ²⁵ D 1.3449	54.5		37.0	54.8		37.1
$CH_3(CH_2)_{10}COOH$. 33	2.00	130	6	$CII_3(CII_2)_{10}CF_3$	88	B.p. 92° (12 mm.), n ²⁵ D 1.3896	64.3	10.3		64.0	10.3	
$\mathrm{CH_{3}(CH_{2})_{16}COOH}$.35	2.13	130	6	$\mathrm{CH_{3}(CH_{2})_{16}CF_{3}}$	93	B.p. 107° (0.3 mm.), M.p. 28-30°, n ²⁵ D 1.4148			18.5			18.5
(CH ₃) ₃ CCH ₂ CHCH ₂ COOH	. 19	0.57	120	6	(CH ₃) ₃ CCH ₂ CHCH ₂ CF ₃	64	B.p. 121-122°, n ²⁵ D 1.3657			31.3			31.1
C1I ₃					CH ₃								
CII ₂ • ₃ COOH	. 20	. 60	120	10	$\langle \hspace{0.5cm} \rangle$ $\langle \mathrm{CH}_2 \rangle_5 \mathrm{CF}_3$	80	B.p. 172-173°, n^{25} n 1.3987	61.8	8.8	29.4	60.9	8.4	29.5
ноосси,соон	. 30	. 69	40	16	FCOCH ₂ COF	70	B.p. 92-94°						
HOOCCH COOH	.40	2.40	150	8	CF ₃ CH ₂ CF ₃ ^d	57			Mass s	pectron	netrie a	nalysis	
HOOC(CII ₂) ₂ COOH	.40	2.40	150	8	CIF3CH2CH2CF3d	41			Mass s	- spectror	actric a	nalysis	
HOOC(CH ₂) ₄ COOH	. 67	2.23	130	7	$CF_3(CH_2)_4CF_3$	19	B.p. 99101°, n ²⁵ D 1.3071	37.1	4.2	58.7	37.4	4.4	58.1
220 3 0 (0-2/4 - 3 - 3					CF ₃ (CH ₂) ₄ COOH ^e	39	M.p. 36-38°	42.4	5.3	33.5	42.5	5.3	33.1
HOOC(C1-[2])8COOH	.15	0.46	120	6	CF ₃ (CH ₂) ₈ CF ₃	27	B.p. 90–96° (20 mm.), n ²⁵ D 1.3519	48.0	6.4	45.6	48.4	6.7	45.4
22000(01-270-1-1					CF ₃ (CH ₂) ₈ COF	45	B.p. 115-118° (20 nim.)	52.7	7.1	33.3	53.1	7.3	32.6
					FCO(CH ₂) ₈ COF	21	B.p. 144-146° (20 mm.)						
CH ₂ COOH													
					$oldsymbol{\widetilde{C}}\mathbf{F}_3$								
CHCOOH	.07	0.63	130	10		20	B.p. 104–106°	31.9	$^{2.2}$	58.8	32.2	2.5	58.2
1					$F_2 \longrightarrow F_2$								
CH2—COOH													
CH ₂ BrCHBrCH ₂ COOH	. 53	1.85	140	8	CII ₂ BrCHBrCII ₂ CF ₃	54	B.p. 69-75° (58 mm.)	1.78	1.9	21.2	18.1	$^{2.0}$	21.7
HCF ₂ CF ₂ COOH ^a	. 15	0.48	250	8	HCF ₂ CF ₂ CF ₃ ^d	56			Mass s	spectroi	uctric a	nalysis	
(COOH) ₂	00	0.00	150	6	(CF ₃) ₂	43	B.p. 68–69°	27 6	9 1	50.4	27.0	9.0	FO 1
	.28	2.32	150	О	L	43	B.p. 08-09	37.6	3.1	59.4	37.9	3.2	59.1
$F_{2F} \sim _{\exists} CH_{2}COOH$	00	0.20	100	16	F_2 CH_2CF_3	51	B.p. 67°	29.3	1.0	69.5	29.8	1 4	CO F
$\mathbf{F}_2 \bigcup_{\mathbf{F}_2} \mathbf{F}_2$.08	0.30	160	10	\mathbf{F}_2 \mathbf{F}_2	91	D.p. 07	<u> </u>	1.2	09.5	29.0	1.4	68.5
CH ₂ =CHCOOH	.75	2.00	130	8	CH ₂ =CHCF ₃ ⁹	45	B.p. $-26^{\circ i}$		Mass s	spectroi	netric a	nalysis	
CH ₂ =C-COOH	.75	2.00	130	8	$C11_2 = CCF_3$	54	B.p. 6°i		Mass	spectron	netrie a	nalysis	
					.		-			-		•	
CH ₃					ĊH₃								
HOOCCH=CHCOOH (trans)	. 55	2.78	130	9	CF ₃ CH=CHCF ₃ (trans) ^{f,o}	95	B.p. 6°k		Mass s	spectroi	netric a	nalysis	
HOOCCH ₂ CH=CIICH ₂ COOH	. 10	0.55	130	10	CF3CH2CII=CHCH2CF3	58	B.p. 90-91°, n ²⁵ D 1.3131			59.3		,	59.5
CH ₂ =CCOOH	.62	2.80	160	10	$CH_2=CCF_3^f$	26	B.p. 47-49°	33.7	2.3	64.1	33.9	2.4	63.6
	-				1								
CH,COOH					CH ₂ CF ₃								
011 2 0 00					$C11_2 = CCOF^f$	41	B.p. 90-95°	38.5	2.6	48.7	39.3	2.9	47.1
					CH ₂ CF ₃								

FLUORINATION OF ORGANIC CARBONYL COMPOUNDS

TABLE I (Continued)

						Pr	oducts-			-Analys	es. %		
Structure Structure	Moles	Moles	Temp.,	Time		Yie1d		C -C	alculate	d——	C	-Found	F
	Moles	Sr ₄	°C.	hr.	Structure	%	Properties	C	H	Р	C	H	P.
СООН	. 149	0.89	120	4	CH ₃ CF ₃	31	B.p. 95-96°	41.2	3.0	55.8	41.3	3.3	55.8
					CF ₃ ^f CH ₃	30	B.p. 160-161°	46.2	3.3	41.7	46.7	3.6	40.1
нс≡ссоон	2.00	2.10	30-55	3	HC≡CCOF ^f	28	B.p. 22-23°						
НС≡ССООН	0.27	0.78	120	3	HC≡CCF ₃ ^{f,h}	60			Mace	pectron	etric a	alveic	
$HOOCC = CCOOH^b$.395	1.67	70	6	FCOC=CCOF	51	B.p. 40-45°		Mass .	spectron	ictiic a	iary sic	
HOOCC≡CCOOH°	.125	0.75	170	8	$CF_3C \equiv CCF_3^d$	80	D.p. 40 40		Mace	spectron	uetric ai	121veis	
HOOCCH2OCH2COOH	.50	3.00	130	7	CF ₃ CH ₂ OCH ₃ CF ₃	35	B.p. 58–59°	26.7	2.2	spectron	27.4	2.6	
		0.00	100	•	CH ₂ -CF ₂	00		20.7	2.2		27.1	2.0	
					O CH ₂ —CF ₂	14	B.p. 91° , n^{25} D 1.3262	30.0	2.5	47.5	30.6	2.8	47.5
$C_2H_bOOC(CH_2)_4COOH$. 77	2.00	130	7	$C_2H_5OOC(CH_2)_4CF_3$	14	B.p. 57-59° (11 mm.), n ²⁵ D 1.3725	48.5	6.6	28.8	48.5	6.7	28.8
					HOOC(CH ₂) ₄ CF ₃ ^e	13	B.p. 110-111.5° (17 mm.)						
							M.p. 37–38.5°						
HOCH₂COOH	.75	3.00	160	5	FCH₂CF₃ ^q	48	B.p. $-26.5^{\circ l}$		Mass s	pectron	ietric ai	ıalvsis	
					FCH ₂ COF	18	B.p. 51°**			•		•	
HOOCCH ₂ SO ₃ H	.2	0.69	180	6	CF ₃ CH ₂ SO ₂ F	41	B.p. 105-107°			45.8^{v}			45.9
$HOOC(CH_2)_{10}SO_3H$.083	0.41	130	8	$CF_3(CH_2)_{10}SO_2F$	42	B.p. 100-110° (0.10 mm.)	45.2	6.9	26.0°	44.8	6.9	
HOOC(CH ₂) ₆ CH—SO ₃ H	. 195	1.61	150	8	$CF_3(CH_2)_6CH$ — SO_2F	33	B.p. 62-64° (0.15 mm.)	34.0	4.1	41.8 ^x		4.1	41.8
СООН					$\overset{ }{\mathrm{CF}_3}$								
C ₆ H ₅ COOH	.25	0.50	120	6	C ₆ H ₅ CF ₃	22	B.p. 100101°, n n 25D 1.4133			39.0			39.0
- , , -	.20	0.00	120	O	C ₆ H ₅ COF	41	B.p. 155-156°°			15.3			14.8
$C_6H_5COCOOH$. 125	.51	100	6	C ₆ H ₅ CF ₃	13	B.p. 45-55° (100 min.)			10.0			11.0
	. 120	.01	100	O	C ₆ H ₅ COF	59	B.p. 92–94° (100 min.)						
$o-C_6H_4(COOH)_2$. 10	. 55	120	6	$0 - C_6 H_4 (CF_3)_2$	43	B.p. 140-144° ^p			53.2			53.1
0 00114(0 0 011)2	. 10	.00	120	U	o-C ₆ H ₄ (COF)(CF ₃)	23	B.p. 175–178° ^q	50.0	2.1	39.5	50.5	2.3	39.1
p-C ₆ H ₄ (COOH) ₂	.10	.60	120	6	p-C ₆ H ₄ (CF ₃) ₂	76	B.p. 113-115°, n ²⁵ D 1.3767°	30.0	٠.1	00.0	50.5	2.0	og. 1
P -00114(-0 -0 11/2		.00	120	U	p-C ₆ H ₄ (COF)(CF ₃)	3	B.p. 156°*						
H00C	.07	.83	150	c	CF ₃ —CF ₃	_	-	04.0	0.0	05.1	04.7	0.7	04.0
HOOC COOH	.07	.00	100	6	CF_3 CF_3	77	M.p. 73-74°	34.3	0.0	65.1	34.7	0.7	64.2
p-C ₆ H ₄ (COOCH ₃)(COOH)	.44	1.33	130	7	$p\text{-}C_6H_4(\text{COOCH}_3)(\text{COF})$	63	B.p. 120–121° (13 mm.) M.p. 69–70.5°	59.2	3.9	10.4	59.4	4.2	10.7
p-C ₆ H ₄ (NO ₂)(COOH)	.67	2.12	130	7	$p\text{-}C_6H_4(NO_2)(CF_8)$	72	M.p. 41–43° ^t	44.0	2.1 ^y		44.4	2.2	
ноос	.20	1.20	1 50	8	CI—CF ₃	62	B.p. 147°, n^{25} D 1.4130°						
HOOC N COOH	.035	0.42	150	6	CF ₃ CF ₃ CF ₃	20	B.p. 129°	27.3	0.0	64.7	28.2	0.4	64.5

FOOTNOTES IN TABLE I

"BF₃ (0.03 mole) catalyst employed; at 180° without catalyst, only HCF₂CF₂COF obtained. b Sixty grains of methylcyclohexane employed as diluent. Tif₄ (0.016 mole) catalyst employed. Product purified by scrubbing with 40% aq. KOH. Free acid formed in work-up procedure when crude product containing HF placed in glass equipment. Infrared spectrum in agreement with structure shown. Product purified by scrubbing with 20% aq. KOH, then distilled. Product purified by scrubbing buffer solution of pH 8.5 containing 450 g. NaH₂PO₄·H₂O and 220 g. KOH in 4 liters of water. Reported b.p. -24°; B. H. Robbins, J. Pharmacol. Exptl. Therap., 86, 197 (1946). Reported b.p. 64°; F. Swarts, Bull. acad. roy. Belg., 36, 191 (1927). Reported b.p. 85°; R. N. Haszeldine, J. Chem. Soc., 2504 (1952). Reported b.p. -26.1°; J. A. Cuculo and L. A. Bigelow, This Journal. 74, 710 (1952). Reported b.p. 51°; B. C. Saunders and G. J. Stacey, J. Chem. Soc., 1773 (1948). Reported b.p. 102°; H. S. Booth, H. M. Elsey and P. E. Burchfield, This Journal., 57, 2066 (1935). Reported b.p. 151°; C. E. Entemann, Jr., and J. R. Johnson, ibid., 55, 2900 (1933). Reported b.p. 141.2°; P. E. Brown and T. DeVries, ibid., 73, 1811 (1951). Reported b.p. 158-162°; U. S. 2,181,554 to General Aniline Works, Inc., 11-28-39. Reported b.p. 117°, n²⁵D 1.3767; reference cited in footnote p. Reported b.p. 158-162°; reference cited in footnote p. Reported b.p. 158-162°; reference cited in footnote p. Reported b.p. 14128; A. L. Meyers and T. DeVries, This Journal., 73, 1813 (1951). Calcd. for S, 19.3%, found 19.4%. Calcd. for S, 11.0%; found 19.9%. Calcd. for N, 7.3%; found 7.6%.

Table II Reactions of Acyl Halides, Anhydrides and Carbonylic Acid Salts with SF_4

						P	roducts-				Analy	ses. %			
Structure Structure	Moles	Moles SF4	Temp., °C.	Time, hr.	Structure	Yield,	Properties	c	——Calç H	ulated — F	Cl	~ c	HF0	und	CI
$C_6H_5COF^a$	0.145	0.30	120	6	$C_6H_5CF_3$	41	B.p. 100°, n ^{24.9} p 1.4124								
$C_6H_5COCl^b$. 20	.80	150	8	C_6H_5COF	51	B.p. 149°								
C ₆ H ₅ COCl ^c	.20	. 50	120	6	CF ₃	25	B.p. 138-139°, n ²⁵ D 1.4459 ^g	46.6	2.2	19.6	31.6	47.3	2.3	19.5	31.5
(CH ₃ CO) _? O	.30	.20	300	10	CH₃CF₃ ^e	50				Mass	s spectron	netric and	alysis		
снсо	.30	.60	150	13	CH-COF	71	B.p. 100-105°	40.0	1.7		-	40.4	1.9		
CH-CO O					∥ Сн—СОБ										
CIC -CO	.20	. 47	300	10	CIC - CF ₂	46	B.p. 73-74°			36.0	33.6			36.0	33.7
co	. 20	.40	180	18	COF	93	M.p. 40°h	56.5	2.4	22.4		56.9	2.5	23.1	
co	. 40	1.60	350	11	$\mathrm{CF_3}$	45	B.p. 143°	44.9	1.9			45.2	2.3		
C₀H₅COONa	.25	. 50	120	6	C_6H_5COF	48	B.p. 152 155°								
$C_6H_5C\equiv CCOONa^d$.475	. 52	45	6	C ₆ H ₅ C≡CCOF	71	B.p. 52-53° (2 mm.)	73.0	3.4			73.5	3.6		

^a HF (0.05 mole) catalyst employed. ^b Under same conditions, with HF catalyst, the starting material charred. ^c HF (0.25 mole) catalyst employed. ^d This run included 100 ml. of cyclohexane as diluent. ^e Product purified by scrubbing through 10% aq. NaOH. ^f Infrared spectrum in agreement with structure shown. ^a Reported b.p. 138.4°, n^{21.2}b 1.4466; H. S. Booth, H. M. Elsey and P. E. Burchfield, This Journal, 57, 2066 (1935). ^b Reported m.p. 42-43°; A. T. Dann, A. N. Hambly, R. E. Paul and G. S. Semmers, J. Chem. Soc., 15 (1933).

TABLE III
REACTIONS OF ESTERS WITH SF4

			KEAC	.110.49 0	LESIEN	S WIII OL4		
Structure	Moles	Moles SF ₄	Catalyst, moles	Temp., °C.	Time. hr.	Structure	ts——— Yield, %	Properties
$C_6H_5COOCH_3^a$	0.30	0.60		300	6	$C_6H_5CF_3$	55	B.p. 98°
						C_6H_5COF	Trace	B.p. 151°
p-C ₆ H ₄ (COOCH ₃) ₂	. 10	. 60	BF_3 , 0.03	130	8	$p-C_6H_4(CF_3)_2$	16	B.p. 113-116°
						p-C ₆ H ₄ (COF)(CF ₃)	26	B.p. 154-158°
						p-C ₆ H ₄ (COF) ₂	4	M.p. 122-124°
						$\mathrm{CH_3F}^b$	High	
HCOOCH₃	. 10	. 32	HF, 0.05	200	6	CH3F and CHF3, yields high;		
						HCF_2OCH_3 , yield low^b		
F ₂ COOCH ₃	. 20	.60	BF ₃ , 0.03	140	16	F_2 CF_3 F_2	10	B.p. 42-43°

^a At 250° for 6 hr., no reaction occurred. ^b Analysis by mass spectrometry.

TABLE IV

REACTIONS OF AMIDES WITH SF4

Starting materia	Moles	Moles SF4	Catalyst, moles	Temp °C.	Time. hr.	Structure	Product	Properties
$C_6H_5CONH_2$	0.20	0.41		150	8	$C_6H_5CF_3$	13	B.p. 36-38° (64 mm.)
						d do-		n^{25} D 1.4150
$C_6H_5CONHCH_3$. 25	, 50	BF_3 , 0.015	60	4	C_6H_5COF	48	B.p. 90–94° (107 mm.)
$C_6H_5CON(CH_3)_2$.25	. 50		13 0	6	$C_6H_5CF_2N(CH_3)_2^a$	17	B.p. 70-71° (15 mm.)
						C_6H_5COF	1.3	B.p. 50-55° (13 mm.)
CONH	. 20	. 69	BF ₃ , 0.045	100	10	o-C ₆ H ₄ (COF)(CF ₃)	58	B.p. 176-178°

^a Anal. Calcd. for C₉H₁₁NF₂: C, 63.1; H, 6.5; N, 8.2; F, 22.2. Found: C, 64.0; H, 6.5; N, 8.0; F, 21.6.

TABLE V

REACTIONS OF ALDEHYDES WITH SF4

			_		<i></i>		oducts
Structure	Moles	$Moles$ SF_4	Temp., °C.	Time, hr.	Structure	Yield. %	Properties
CH₃CHO	0.60	0.75	50	14	$\mathrm{CH_3CHF_2}^b$	35	B.p. above $-34^{\circ g}$
CH ₃ (CH ₂) ₅ CHO	0.25	0.37	60	8	$CH_3(CH_2)_5CHF_2$	43	B.p. 118-119°, n ²⁴ D 1.3688 ^h
$(HCHO)_x$ (α -polyoxymethylene)	2.33	2.30	150	6	$\mathrm{CH_2F_2}^b$	49	B.p51.5°
					$FCH_2OCH_2F^c$	21	B.p. 32-34°
H(CF ₂) ₄ CHO	0.25	0.28	100	10	$H(CF_2)_4CHF_2^d$	55	B.p. 68-70°
$C_6H_5CHO^a$. 30	0.60	150	6	$C_6H_5CHF_2^e$	81	B.p. 130-135° ⁱ
p-C ₆ H ₄ (CHO) ₂	. 15	1.00	150	8	p-C ₆ H ₄ (CHF ₂) ₂	88	B.p. 54° (20 mm.)

^a Under same conditions, with 0.30 mole SF₄, no distillable product obtained. ^b Analysis by mass spectrometry. ^c This product decomposes on storage, even at 4°. ^d Anal. Calcd. for C₅H₂F₁₀: F, 75.3. Found: F, 74.8. ^e Anal. Calcd. for C₇H₆F₂: F, 29.7. Found: F, 29.5. ^f Anal. Calcd. for C₈H₆F₄: F, 42.7. Found: F, 42.9. ^g Reported b.p. -26°; German Patent 641,878 to I. G. Farbenindustrie A.G., 1937. ^h Reported b.p. 120°, n²⁰D 1.3710; A. L. Henne and E. P. Plueddeman, This Journal, 65, 587 (1943). ^f Reported b.p. -52°; E. H. Hadley and L. A. Bigelow, *ibid.*, 62, 3302 (1940). ^f Reported b.p. 133.5°; F. Swarts, Bull. acad. roy. Belg., 414 (1900).

Orientation of the chlorobenzotrifluoride was established by hydrolysis in concentrated sulfuric acid³ to give m-chlorobenzoic acid in high yield.

Esters.—Carboxylic esters (Table III) require vigorous conditions for reaction with SF_4 . Again, the products are trifluoromethyl compounds. Thus, methyl benzoate did not react at 250° but at 300° yielded benzotrifluoride and methyl fluoride.

 $C_6H_5COOCH_3 + 2SF_4 \longrightarrow C_6H_5CF_3 + CH_3F + 2SOF_2$

 α,α -Diffuoro ethers and acyl fluorides appear to be intermediates in the conversion of an ester to the trifluoromethyl compound. Although methyl formate and SF₄ gave fluoroform and methyl fluoride as the major products, the presence of methyl difluoromethyl ether, HCF₂OCH₃, in the crude product was indicated by mass spectrometry. Also, very low conversion of ethyl acetate to a product thought to be ethyl 1,1-difluoroethyl ether,

(3) G. M. LeFave, This Journal. 71, 4148 (1949).

 $\text{CH}_3\text{CF}_2\text{OCH}_2\text{CH}_3$, was indicated by the hydrogen and fluorine nuclear magnetic resonance spectra of the product, but the substance was not isolated in a pure state. Acyl fluorides, which could be formed either directly from the ester or by elimination of an alkyl fluoride from an α, α -difluoro ether, have been isolated in some cases from reactions of esters and SF₄.

Although esters will react with SF_4 at 130° when catalyzed by BF_3 or TiF_4 , the presence of HF is without effect at temperatures to 170°. The latter fact has enabled us to prepare terminal trifluoro esters from monoesters of dibasic acids. For example, ethyl 6,6,6-trifluorohexanoate has been obtained from monoethyl adipate.

Amides.—In contrast to the sluggish behavior of the ester group with SF₄, the amide group is quite sensitive. Reactions of amides and SF₄ are listed in Table IV. Two types of amides may be distinguished: Those in which there is at least one N-H bond and those without an N-H bond. In

the first group, the carbonyl–nitrogen bond breaks to give an acyl fluoride, which may then undergo further reaction. Thus, benzamide and N-methylbenzamide yielded benzotrifluoride and benzoyl fluoride. With amides having no N–H bond, the carbonyl–nitrogen bond may or may not be broken. As examples, tetramethylurea yielded dimethylcarbamyl fluoride, and N,N-dimethylbenzamide yielded either benzoyl fluoride or N,N-dimethyl- α , α -difluorobenzylamine.

$$C_6H_5CON(CH_3)_2 \xrightarrow{SF_4} C_6H_5COF$$

$$C_6H_5CF_2N(CH_3)_2$$

The preparation of the difluoroamine could not be repeated consistently and could not be accomplished when the starting material contained small amounts of benzoic acid. These results suggest that the reaction of an amide with SF₄ in which the carbonyl-nitrogen bond is cleaved is catalyzed by trace amounts of HF.

Aldehydes and Ketones.—The action of SF₄ on aldehydes is typified by the preparation of benzal fluoride from benzaldehyde.

$$C_6H_5CHO \xrightarrow{\$F_4} C_6H_5CHF_2$$

Table V lists reactions of aldehydes with SF_4 . In general, aldehydes having no α -hydrogen atoms gave high yields of the expected difluorides. Aliphatic aldehydes which possess α -hydrogen are somewhat sensitive to SF_4 and the yields of the difluorides were correspondingly lower.

Reactions of ketones with \overline{SF}_4 are listed in Table VI. Although ketones containing α -hydrogen are also sensitive toward SF_4 , acetone gave a 60% yield of 2,2-difluoropropane. By carrying out the reaction below 50° , 1,1-difluorocyclohexane was obtained from cyclohexanone.

Benzophenone is quite resistant to reaction with SF₄ even at temperatures considerably higher than those employed for other ketones, a fact which probably reflects the steric hindrance of the carbonyl group. However, high yields of diphenyl-difluoromethane were obtained from benzophenone and SF₄ when a catalyst was employed. When the catalyst used was BF₃, AsF₃ or TiF₄, the temperature of reaction had to be moderated to prevent complete charring of the benzophenone. With vicinal polyketones, such as benzil and diphenyl-triketone, all of the ketonic oxygen atoms are replaced.

Quinones.—Some quinones, such as anthraquinone and chloranil, react in the same fashion as a ketone to yield products in which each carbonyl

oxygen atom is replaced by two fluorine atoms. Other quinones are irregular in their behavior with

Table VI: Reactions of Ketones with SF₄

Starting malerial—Structure	Moles	Males SF4	Temp., °C.	Time, hr.	Structure	Vield, %	ducts————————————————————————————————————	Calculated Analyses, % Found F C H F	ed F	ses, %	Found-	
снясосня	0.60	0.67	110	91	CH3CF2CH3	09	60 B.p. -10° to $-5^{\circ\bullet}$	Mass	spectron	Mass spectrometric analysis	nalysis	
v	.40	.41	39	13	\$\display \tag{\tag{\tag{\tag{\tag{\tag{\tag{	31	B.p. 98-99°, n ²⁶ p 1.3890	59,9 8.4 31.6 59,9 8.2 31.0	31.6	59.9	∞	31.0
$C_6H_6\mathrm{COC}_6\mathrm{H}_5^h$.25	.50	180	9	C ₆ H ₅ CF ₂ C ₆ H ₅	26	B.p. 114–115° (7.5 mm.), n^{26} p 1.5351 ^{t}					
S,H,COCF3	.075	22.	100	oc:	C,H,CF,CF3	65	B.p. 115-116°	49.0 2.6 48.4 49.6 2.9 47.8	48.4	49.6	9.9	8.71
C, H, COCOC, H,	.125	.50 03	180	ũ	C ₆ H ₅ CF ₂ CF ₂ C ₆ H ₆ ^d	34	M.p. 122-123°h		99.9			29.3
2,H5COCOCOC,H5	.075	.50	120	o:	C ₆ H,CF,CF,CF,C ₆ H ₅	20	B.p. 74-76° (0.24 mm.)	59.2 3.3 37.5 59.9 3.6 37.4	37.5	59.9	3.6	37.4
0°H·0.) 00	.254	1.55	120	8	CF ₂ CF ₂ d	25	В.р. 34° (4.5 шш.), 92-93° (70 шш.)	47.8 1.8 50.4 47.4 2.5 50.8	50.4	1.1	6.1 13.	8.08
$C_2H_5OOCCH_2)_2CO$.25	0.50	8	9	$(C_2 \Pi_5 OOCCH_2)_2 CF_2$	56	B.p. 63-65° (2 mm.), n^{25} p 1.4038	48.2 6.3 16.9 49.8 6.5 16.1	16.9	49.3	6.5	16.1
CH3COCH2CH2COOC2H6	.42	.48	92	10	CH3CF2CH5CH2COOC2H5	16	B.p. 70-72° (27 mm.), n ²⁵ p 1.3798	50.6 7.3	22.8	51.5	9.	22.6
C,H,COCH=CHCOOCII;	83	.48	160	10	C6H6CF2CH=CHCOOCH3	25	B.p. 102-103° (4.5 mm.), n ²⁵ p 1.4861	62.3 4.8 17.9 62.5 4.9 18.0	17.9	62.5	6.1	0.8

the starting material charred. b HF (0.05 mole) catalyst employed. • Water (0.028 mole) was added to this run; water gives HF catalyst by the reaction H₂O + IF + SOF₂. d Infrared spectrum in agreement with structure shown. • Reported h_D. -0.1°; A. V. Grosse and C. B. Liun, Thus Johnnah, 64, 2289 (1942). J Reported (10 mm.), n²0 1.5379; A. L. Henne and H. M. Leicester, ibid., 60, 864 (1938). • J. H. Simons and D. P. Hernan, ibid., 65, 2064 (1943), report the synthesis of CaH₃CP₂-CA₃CC₃ and AgF₂ in 1.3% yield, and give a bp. 128-129°. h U. S. Patent 2,238,242 to du Pont (April 15, 1941); a compound having m.p. 122-123°, prepared sCC₃CC₃CC₃CC₃CC₄C₆H₈ and HF and stated to be CaH₃CF=CFC₆H₈, is probably identical with the substance reported here. rom C₆H₅CCl₂CCl₂C₆H₆ and

SF₄. Some hydroxyquinones yielded substances in which HF added to an unsaturated bond of the initial product. Thus, 1,1,2,2,4,4-hexafluoro-1,2,3,4-tetrahydronaphthalene was obtained from 2-hydroxy-1,4-naphthoquinone and 1,3,3,4,4,6,6-heptafluorocyclohexene from 2,5-dihydroxyquinone. Quinone reacted with SF₄ and HF at 200° to give a 30% yield of 1,2,4-trifluorobenzene. This reaction may proceed by 1,4-fluorination of the α , β -unsaturated carbonyl groups, and then loss of a molecule of hydrogen fluoride. Reactions of quinones are listed in Table VII.

$$\begin{array}{c|c}
O & & F & F \\
\hline
O & -2SOF_2 & F & F \\
\hline
O & HF & F
\end{array}$$

Syntheses of Carbon Tetrafluoride.—Several routes to carbon tetrafluoride from SF₄ (Table VIII) have been found. The oxygen atoms of carbon dioxide are replaced stepwise to give carbon tetrafluoride by way of carbonyl fluoride.

$$CO_2 \xrightarrow{SF_4} COF_2 \xrightarrow{SF_4} CF_4$$

Phosgene also gave CF_4 by way of carbonyl fluoride, formed by an initial halogen exchange. A recent publication notes a related reaction between phosgene and $PF_{\mathfrak{b}}$ to give difluorodichloromethane.

Another interesting route to CF_4 is provided by the reaction of carbon monoxide with SF_4 . When approximately equimolar amounts of CO and SF_4 are used, up to 88% of the fluorine may be found in the product as CF_4 , along with smaller amounts of carbon oxysulfide, carbonyl fluoride, thionyl fluoride and free sulfur. Two reactions shown to occur in this system are

$$3CO + SF_4 \longrightarrow 2COF_2 + COS$$

 $3CO + SOF_2 \longrightarrow COF_2 + COS + CO_2$

Whereas temperatures near 500° are required for reaction of CO and SF₄ alone, high yields of CF₄ may be obtained at $150-250^{\circ}$ by operating in liquid HF.

Hydroxylic Compounds.—Compounds containing hydroxyl groups react readily with SF_4 to introduce a fluorine atom at the site of the hydroxyl group (Table IX). As expected there is a rough correlation between the acidity of the hydroxyl group and the yield of product. The carboxylic and sulfonic acids, which possess very acidic hydroxyl groups, are easily converted in high yields to the acyl and sulfonyl fluorides. Moderate yields of fluorinated products are given by less acidic compounds such as tropolone, which is converted to α -fluorotropone.

Compounds even less acidic, such as methyl, ethyl and isopropyl alcohols, gave the corresponding

(4) R. N. Haszeldine and H. Iserson, Nature, 179, 1361 (1957).

alkyl fluorides, but in these cases a major byproduct was the alkyl ether.

Catalysis and Mechanism.—The greater ease of reaction of a carboxylic acid with SF4, as compared to the anhydride, to give a trifluoromethyl compound led to the discovery of catalysis of the reaction by hydrogen fluoride. Since it had been shown that a carboxylic acid reacted with SF4 even at room temperature to give the acyl fluoride and hydrogen fluoride, it seemed reasonable that hydrogen fluoride was catalyzing the fluorination of the carbonyl group. Other evidence which pointed to the same conclusion was the fact that sodium benzoate yielded benzoyl fluoride, but no benzotrifluoride, under the same conditions that had been employed to convert benzoic acid to a mixture of benzotrifluoride and benzoyl fluoride. That hydrogen fluoride is actually a catalyst was proved when the yield of diphenyldifluoromethane from benzophenone and SF4 was increased from 10 to 97% by addition of less than a stoichiometric amount of HF. Other fluorides, such as BF₃, AsF₃, PF₅ and TiF₄, subsequently proved to be even more potent in their ability to catalyze fluorinations by SF₄.

A possible route by which an oxygen atom is replaced by two fluorine atoms is indicated in the scheme

$$C=0 \xrightarrow{XF_{n}} -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\leftarrow}}} -0 -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\rightarrow}}} -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\leftarrow}}} -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\leftarrow}}} -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\leftarrow}}} -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\leftarrow}}} -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\rightarrow}}} -\overset{\delta^{\Xi}}{\overset{\circ}{\rightarrow}} -\overset{\delta^{\Xi}}{\overset{\circ}{\rightarrow}} -\overset{\delta^{\Xi}}{\overset{\circ}{\overset{\circ}{\rightarrow}}} -\overset{\bullet}{\overset{\bullet}{\overset{\circ}{\rightarrow}}} -\overset{\bullet}{\overset{\bullet}{\overset{\circ}{\rightarrow}}} -\overset{\bullet}{\overset{\bullet}{\overset{\circ}{\rightarrow}}} -\overset{\overset{\bullet}{\overset{\circ}{\rightarrow}}} -\overset{\overset{\overset{}{\overset{\circ}{\rightarrow}}}} -\overset{\overset{\overset{}{\overset{\overset{\overset{}{\rightarrow}}}}}} -\overset{\overset{\overset{\overset{\overset{\overset{$$

The initial step is thought to be coördination of the fluoride XF_n with the carbonyl compound to bring about a polarization of the carbonyl group. The complex may then react with SF_4 in the manner depicted. An alcohol probably reacts with SF_4 by elimination of HF to give an intermediate $R-O-SF_3$, which may further react with XF_n in a manner like that shown for $>CF-O-SF_3$. Although the role of XF_n may be assumed by SF_4 , reactions proceed under milder conditions when XF_n is one of the catalysts, HF, BF_3 , AsF_3 , TiF_4 or PF_5 . The ability of a substance to act as a catalyst can be correlated with its strength as a Lewis acid with respect to a carbonyl group. Fluorides which are not Lewis acids do not act as catalysts.

Additional evidence that the reaction may be initiated by coördination of a Lewis acid to the carbonyl group is provided by the behavior of compounds having two strongly electron-attracting groups attached to the carbonyl group. In such compounds the Lewis base character of the carbonyl group is so greatly reduced that coordination to the Lewis acid is significantly decreased. Reactions of such compounds should

TABLE VII
REACTIONS OF QUINONES WITH SF₄

							Produ	ctsd				-Analys	es. %			
Structure	erial—— Moles	Moles SF4	Catalyst, moles	Temp., °C.	Time, hr.	Structure	Yield,	Properties		Calcu H	lated F	Cl	c	Fo	und F	Cı
	0.20	0.35	нг, 0.35	200	4	F -F	30	B.p. 86.5°	54.6	2.3	43.2	Ci	54.8	2.9	42.2	G
Cl- Cl	. 14	.42	HF, 0.15	270	2.5	$\begin{array}{c} Cl & \overbrace{F_2} & -Cl \\ Cl & \overbrace{F_2} & -Cl \end{array}$	75	M.p. 45.5-46.5° B.p. 183-188°	24.9		26.2	48.9	25.0		26.2	48.9 ÷
O 						CI—CI CI—CI	2	M.p. 104107°	26.9		14.2	52.9	27.2		14.3	52.6 P
но О О О	.10	-55	HF, 0.10	60	8	$F = F_2$	40	B.p. 88–88.5°	34.6	1.5	63.9		35.2	1.7	62.5	C. C
О	.10	.50	(H ₂ O, 0.10) ^c	140	1.5	F_2 F_2	36	B.p. 91-95° (30 mm.)	50.0	2.5	47.5		50.6	2.7	47.0	AND TO
O C	.059	.28	HF. 0.05	255	8	F_2	78	M.p. 122-122,5°	66.7	3.2	30.1		67.7	3.4	29.0	I. LANGEL

^a Without catalyst, no reaction at 200°; charring at 250°, and a trace of impure 1,2,4-trifluorobenzene obtained at 240°. ^b At 220° only a trace of product formed. ^c Water gives HF catalyst (H₂O + Sl²₄ → SOl²₂ + 2HF). ^{¬†} Infrared spectra for all products in agreement with structures shown. ^a Reported b.p. 88°; G. Schiemann, *J. prakt. Chem.*, 140, 97 (1934).

TABLE VIII
SYNTHESIS OF CARBON TETRAFLUORIDE

Starting material	Moles	Moles SF4	Catalyst, moles	Temp., °C.	Time, hr.	Products, yielda
CO_2	0.11	0.20		500	2	CF ₄ , 80%: COF ₂ , 10%
$COC1_2^b$.10	. 30	TiF ₄ , 0.026	250	4	CF ₄ , 90%; COF ₂ , 9%
CO	.2	. 50	HF, 0.5	250	7	Based on CO: CF ₄ , 95% ^c
∫ CO	. 75			500	2	CO, 70%; COS, 13%; COF ₂ , 6%; CO ₂ , 11%
) SOF ₂	.22 ∫					

 $^{^{}a}$ Yields calculated from mass spectrometric analyses. b No reaction at 250 o without catalyst. c The theoretical amount of sulfur, 0.10 mole, also formed, based on reaction 2CO + 3SF $_{4}\rightarrow$ 2CF $_{4}$ + 2SOF $_{2}$ + S.

TABLE IX
REACTIONS OF HYDROXYLIC COMPOUNDS WITH SF4

Structure	Moles	Moles SF ₄	Temp.	Time, hr.	Structure	roducts? Vield. %	Properties	Calcula C	—Analy ated H	ses. %— Fou	nd H
OH ^a	0.02	0.065	60	10	O F	28	M.p. 74-75°	67.7	4.0	67.7	4.3
Br OH ^a	0.0033	0.02	60	8	Br F Br	57	M.p. 134-142°	23.2	0.6	23.4	0.9

^a Experiment included 5 ml. of benzene as solvent; reaction run in a sealed platinum tube (capacity 15 ml.) which was heated while under nitrogen pressure in a shaker tube. ^b Infrared spectra of products in agreement with structures shown.

therefore require more vigorous conditions than those without electron-attracting groups, and such is found to be the case. Compounds having fluoroalkyl groups or fluorine atoms attached to the carbonyl group prove to be very sluggish in reactions with SF₄. A temperature of 250° and use of BF₃ catalyst was required to convert 2,2,3,3-tetrafluoropropionyl fluoride to 1H-perfluoropropane. Carbonyl fluoride similarly requires vigorous conditions for transformation to carbon tetrafluoride. The conditions required for reaction are far more vigorous than those necessary for acyl fluorides and ketones having electron-releasing groups attached to the carbonyl group.

Experimental

Details on the preparation and properties of SF_4 may be found elsewhere.

The reactions with SF₄ were carried out in stainless steelor "Hastelloy"-lined shaker tubes of 80-ml. to 1000-ml. capacity. Liquid or solid reactants were placed in the shaker tube under a nitrogen atmosphere, the head was screwed into place, the tube was cooled to solid carbon dioxide temperature, the nitrogen was removed with a vacuum pump and gaseous reactants (HF, BF₃, SF₄, etc.) were condensed into the shaker tube. After being heated for the prescribed period, the shaker tube was allowed to cool. In cases where the gaseous products were of interest, these were condensed into an evacuated stainless steel cylinder at liquid nitrogen temperature; otherwise, excess SF₄ and volatile by-products were vented from the tube. Liquid or solid products were recovered when the tube was opened, and pure products were obtained by the usual processes of distillation, recrystallization and sublimation. When it was necessary to remove HF from the crude mixture, this usually was accomplished by either (1) pouring the crude mixture into water and recovering the product by filtration, extraction or steam distillation, or (2) pouring the crude mixture into a suspension of sodium fluoride (NaF + HF \rightarrow NaHF2) in an inert solvent having a boiling point considerably removed from that of the product desired, followed by filtration and fractional distillation. In some cases removal of HF from a solid or high boiling liquid was accomplished by vaporization of the HF and absorption into solid NaF or NaOH. Reaction times and temperatures, amounts of reactants, nature and amount of catalyst and identity and yield of products are given in the tables. Although the yields of products obtained vary widely, in very few specific cases has an effort been made to find optimum reaction conditions. Where infrared and mass spectrometric analyses were carried out, they are indicated in the tables and were in agreement with the structural assignments. In all cases the hydrogen and fluorine nuclear magnetic resonance spectra were in agreement with the structures of the products.

Acknowledgments.—We are indebted to Drs. F. S. Fawcett, R. J. Harder, J. F. Harris, C. M. Langkammerer, R. V. Lindsey, E. L. Muetterties, A. L. Oppegard, B. C. Pratt, R. E. Putnam, M. S. Raasch, J. C. Sauer, R. M. Scribner, W. A. Sheppard, O. W. Webster and B. D. Wilson for helpful discussions and for providing some of the experimental results listed in the tables.

WILMINGTON, DELAWARE

[Contribution No. 536 from the Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company]

Chemistry of Sulfur Tetrafluoride. III. Organoiminosulfur Difluorides

By William C. Smith, Charles W. Tullock, Ronald D. Smith and Vaughn A. Engelhardt Received July 17, 1959

An investigation of the chemistry of sulfur tetrafluoride has uncovered a new class of substances, the organoiminosulfur difluorides. These compounds, which have the general formula $RN \Longrightarrow SF_2$, have been obtained by the reaction of sulfur tetrafluoride with organic and inorganic compounds having carbon-nitrogen multiple bonds. The chemical and physical data support the postulated iminosulfur difluoride structure for these substances The organoiminosulfur difluorides, unlike the unstable $C_6H_5N \Longrightarrow SCl_2$, have high thermal stability, but the nitrogen-sulfur bond is unstable toward water and ethanol, and gross decomposition of the $-N \Longrightarrow SF_2$ grouping takes place. Reaction of phenyliminosulfur difluoride, $C_6H_5N \Longrightarrow SF_2$, with sodium methoxide and with phenyllithium was limited to the sulfur-fluorine bonds, however, and the new iminosulfur derivatives, $C_6H_5N \Longrightarrow S(OCH_3)_2$ and $C_6H_6N \Longrightarrow S(C_6H_6)_2$, were prepared. A direct synthesis of the trifluoromethyl derivative, $C_5H_6N \Longrightarrow SF_2$, from an inorganic thiocyanate, chlorine and a metal fluoride also is described.

The synthesis of a compound having the empirical formula F₃NS has been reported by Glemser and Schröder.² This compound was assigned the

structural formula FN=SF₂ on the basis of chemical evidence and was the first example of an iminosulfur difluoride. An organoiminosulfur dichloride

(2) O. Glemser and H. Schröder, Z. anorg. allgem. Chem., 284, 97 (1956).

⁽¹⁾ Paper II, W. R. Hasek, W. C. Smith and V. A. Engelhardt, This Journal, $\bf 81,\ 543\ (1960).$